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SECTION 1

INTRODUCTION

In this report we shall describe a method for calculating the propagation
of elastic waves. The method, the phase-screen method, has some relation to WKBJ
and other high frequency methods; the details are quite different. The wave equations
of elastodynamics are solved exactly, the approximation being made on the medium
through which the waves propagate rather than on the solutions to the dynamical
equations themselves. While the method can be used to calculate the propagation
through a complex medium with a known spatial distribution of elastic parameters
(an example is given below), probably the most common use of the method in previous
work has been to study the propagation of waves in stochastic media where only
statistical properties of the media are known; it is this last application we have in
mind here.

The method is not new. It has been used for many years by astronomers
to estimate the effects of the atmosphere on the propagation of starlight, Ratcliffe
[1956], by engineers to study the effects of structure on the propagation of signals

from communication satellites, Knepp [1983], by acoustical engineers to study the
propagation of sound in the ocean, Flatti [1983] and Martin and Flatt6 [1988], and
for other purposes. All of the past studies of which we are aware have considered
only the case of scalar waves. Here we shall formulate the problem for the case of
vector elastic waves; indeed it is the interconversion of transverse and longitudinal
components that provides a major focus of the study.

Consider a simple plane wave (k = w/c), where a harmonic time dependence
of frequency w is assumed propagating in a medium with sound speed c.

.tL
S= eC€. (1)

If we use that solution as an approximation In a medium with sound speed c, we find
that at any fixed z the relation between the approximate solution, 0, and the exact
solution, vk, is just a phase

1W 
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In this simplest example the effect of a velocity anomaly is just to advance or retard
the phase of the wave; that is the central approximation in the phase-screen method:
we assume that the effect of velocity anomalies is to retard or advance the phase of
the wave.

Now consider the situation depicted in figure 1. A wave is propagating from
z = 0 to z = Az through a medium whose mean sound speed is ? with velocity anoma-
lies 6c(z, y,z) present. Our first approximation is that the effect of the anomalies is
to multiply the solution at Az by an x-y-dependent phase factor given by

exp(iA(X,y)) =exp +i-Az+iw + c :')] (3)

Thus the problem shown in figure 1 has been replaced by that shown in figure 2 where
the propagation from 0 to z = Az- is through a medium with a constant sound speed
e. The result is then multiplied by a phase factor given by (3) to obtain the wave at
z = Az+.

To this point we have considered the case where at z 0 we had a simple
plane wave but for more complex cases where the solution at z 0 is a function of
x and y we will use the same procedure of figure 2: propagate through a uniform
medium to z = Az. then correct the phase at z = Az.. With that generalization
we have the possibility of repeating the procedure, inserting phase screens at other
larger values of z. That possibility brings up the other approximation we must make:
we must make the problem parabolic; that is to say, we wish to have a formulation
such that the value of the wave function at some fixed z determines the value at
larger z's. Since the wave equation is second order in each spatial variable that is
not the usual case; usually an initial value problem would require specification of two
functions (e.g. 0 and 8a.) at a fixed a in order to determine the solution. As an
alternative we can specify the value of the function on two planes corresponding to
different values of z. What we shall do is a variant of this last possibility: we *hall
use the value o( the function at a = 0 and Impose outgoing boundary conditions at
2 -, 00, That formulate a well-posed boundary value problem and allows us to solve
for the function at A:,. A standard way to solve such a problem in to decompose
the value of the function at z = 0 into a set of plane wav whose propagation vector
points into the right-hand cone. Thus we make the problem parabolic by a procedure
which can be stated one of two equivalent ways: we use the value of the function at
S = 0 plus a boundary conditin at a -- oo; or, we use the value of the function at
a = 0 plus the assumpmo o( forward propagating waves.

2
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z=O z=z

Figure 1. Propagation of the wave through a segment of inhomogeneous
medium alters the phase of the wave as a function of position
due to the velocity anoinalies I the medium.

SCREEN 2

SCREEN 1

Figure 3. The phae-screen method replaces the Mghomogeous segment
with a uniform segment and a pair of phase screw. The
Integrated phase deect of tw segent Is projected oAto the
second screen.

3
.

I



The approximations just described allow us to take an initial value for the
wave function and propagate the wave through an arbitrary number of phase-screens
to find Its value at any z. Furthermore the extension to vector elastic waves is obvious:
given the displacements at z = 0 we can uniquely decompose them onto the set of S
and P waves which have propagation vectors pointing Into the right-hand cone. We can
thus evaluate the displacements at z = Azs, modify them at z = As+ with separate
phase factors using the appropriate phase velocity for each, and then propagate the
wave, according to the uniform vector wave equation, to the next phame screen where
the proce is repeated. Detailed formulas are given in the next section.

We should remark here about the relation between the explanation of the
phase-screen method we have just presented and another, slightly different discussion
the reader may have seen elsewhere. Sometimes the starting point for explanation of
the phase-screen method is to write the field as

4(.)O(Z. ,.,Z) = ,zY, Z)e'" (4)

where

k,)

and 0 is a slowly vatyiig function of z. This &ads to the replacement of the wave
equation

with the "parabolic w"ve eqution'

+ 24, + (1 (•)

4I
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The problem is thus made parabolic by modifying the dynamical equation to be first
order in z so specifying 4 at one value of z determines the solution.

In addition to this modification of the wave oquation, the phase factors that
correct fur the velocity anomalies of the medium are generally taken to be independent
of k, and k. These approximations are justified for elther scalar or vector waves
provided k, and kv are in fact small compared to w/i, % •iere i generically represents
either of the two average phase velocities for the vector wave case. By dimensional
analysis, k, and k. are inversely proportional to the leng•.-ý scales in the plane normal
to the z-axis. Thus if these lengths are large enough, ,•e approximation is valid.
We have found, based on the comparison of the phase-.t -.e.n method with an exact
solution, which we describe below, that using the FO' jiform wave equation, and
phase factors that depend on k. and k, allows us to ,-xcurately calculate propagation
for slightly smaller structures. Certainly larger strucLures will lead to better results
since waves propagating at large obliqia angles aý • apt to induce backscattering, whi.-h
is not accounted for in the formalism. For large enough structures, tht parabolic
approximation is recovered by expanding cur results for small k,,kv.

A slight variant of the method has been used before in seismology. Haddon
and Huseby (19781 used what amounts to a phase-screen calculation combined with a
stationary phase (ray) approximation, Mercier 119611, to calculate propagation into the
NORSAR array. The combination of phase-screen and stationary phase approximation
produces the thin lense approximation of geometrical optics. They considered only P
wav-s. The method described here could be used for the same situations incltuJig
both S and P waves.

Until now we have simply generalized $he phas ,screen approximation for
scalar waves in an obvious way to account for the two phase vc-locitts. and avoided
making the parabolic approximation to the wave equation. Regardle of whether
we employ the parabolic approximation or not, this leads to significant con"uetu
regarding the conservation of energy. Certainly if a wave is multiplied by an oveall
phan, energy will be conserved. However, if individual contributions to th total wve
are multiplied by different phass, the energy of the subsequent wave will not be equal
to the energy of the original wave; interference terms will result. Weed this is the
caw- if we naively multiply the S and P waves by differeat phase factors. Although thl
violation of energy canrvation i6 quite small at each pha screen using p"amtarx
for whth we expect the method to be valid, the cumulative result of pmptagti the
wave over distances of say 1000 km is significant. It is also particularly dio
tha energy may be gained as well as

5



To remedy this problem while maintaining the spirit of the method, we mod- V
ify the method described thus far in the following way. First, we find the recursion
relations that express the Fourier coefficients of the wave after it has passed through
the screen in terms of the Fourier coefficients of the wave before the screen and the
phase factors which modify the wave at the screen. The recursion relations are conve-
niently expressed in terms of a matrix multiplying the column vector of old coefficients
to produce the column vector of new coefficients. These are vectors and matrices in
the space of Fourier modes, not spacetime. Thus if V, W, and U are the old vector,
the new vector, and the recursion matrix respectively, then

v-= . UV,,, (9)

where we are employing the convention that repeated indices are summed over.

In principle the vector space we are dealing with is infinite dimensional,
however, for practical computational purposes it must be truncated. The second step
of the algorithm is to neglect the evanescent modes, keeping only the finite number
of modes with harmonic z-dependence. This '_s reasonable for two reasons. First,
we are interested in propagation distances for which the evanescent modes have been
exponentially damped. And second, as we will show later, the evanescent modes do
not contribute to the energy. In fact, the energy flux in the z-direction averaged over
time and the coordinates perpindicular to the z-axis is simply the norm squared of
the vector of Fourier coefficients corresponding to the modes that propagate.

The condition that energy is conserved across the phase screen is that U be
a unitary matrix, i. c. it must preserve the length of the vector. This, however, is not
the case when we naively multiply the S and P waves by individual phases, although
for cases of interest it is almost unitary in the sense that its eigenvalues are almost of
unit modulus, and the commutator of U with its adjoint has small entries. 1 Thus
the third step of the algorithm is to make U unitary. The procedure used to modify
the matrix will be described later in full detail.

We are now ready to move on to the details of the method, which will be
organized as followE. In chapter 2, we present the general theoretical details of the
3D method. In particular, the general recursion relations that determine the Fourier
coefficients of the succeeding wave in terms of the Fourier coefficients of the previous
wave and the A-phases, i. e. the phases that modify the wave at the phase screen, are

'The necessary and sufficient conditions for a matrix to be unitary is that it commute with its
adjoint and have unit modulus eigenvalues.

6



derived. With these recursion relations, an incoming source wave may be iteratively
propagated through an arbitrary number of phase screens.

Also in chapter 2, we derive a general criterion to specify the number and
spacing of phase screens to be used. The basic iaea behind the criterion is that for fixed
observation distance the phase-screen solution should converge to a fixed answer as the
number of phase screens are increased. This is analogous to the calculus of integrals
where as the interval is broken up into smaller and smaller regions the convergent limit
is obtained. 2 To optimize computer time, we are interested in finding the marginal
number of phase screens needed such that the answer converges to its asymptotic limit
to within a fixed tolerance. The criterion is cast in the form of a Cauchy condition
for sequences; two successive terms in the sequence are compared to determine how
well the sequence is converging.

Finally in chapter 2, the time-averaged energy flux is computed in terms
of the Fourier coefficients of the phase-screen solution. As mentioned previously the
displacement decomposes naturally in terms of S and P waves; each mode is repre-
sented by a Fourier coefficient. This allows the energy contribution from each mode
to be calculated. These quantities will be useful to determine the magnitude of P to S
conversion, and vice versa, and which features of the medium dictate the magnitude
of the conversion. Included in this discussion is the matrix formulation of the method,
and a detailed description of the numerical procedure for making the recursion matrix
unitary.

In chapter 3, we test the applicability of the method for a 2D sample problem
whose exact solution is also calculated. This provides a check on the method and some
guidelines to follow concerning the range of parameters for which the approximation
is valid. This will help in the extrapolation of the phase-screen method to problems
whose exact solutions cannot be obtained. The actual comparison is made in two ways.
First, by plotting the cartesian components of both solutions for various parameters
of the problem, and second, by computing the average of the norm of the difference
of the two wave vectors. To perform these comparisons more efficiently, we first
determine the marginal number of phase screens needed such that adding additional
phase screens for fixed observation distance does not significantly improve the answer.

Chapter 3 is concluded with an examination of energy flux conversion for
the test problem. Using a single phase screen, we extremize the S to P and P to
S conversion as a function of the ratio of the width of the regions to the free space

21ndeed the limit as the distance between phase screens approaches zero has some resemblence to
the path integral approach to wave propagation, neglecting backacattering, Dashen 119791 and Flatth
119831.

7
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wavelength for various ratio of the tvm sound speeds. 'This will indicate which wave-
lengths, or equivalently what structure sines, induce the most conversion, and how it k
depends on the velocities.

1R • •apter 4, the phase-creen method for Tandom media is discussed, andhe letaliBf some specific examples ane given. We are primariiy interested in the rate

of conversion when the medium is characterized by random velocity fluctuations, and
how it depends on the fequency, the orielation length, the velocity fluctuations, the
distance of popagation, and the type of initial disturbance. In W.a~ticu•ar, ve model a
two dimensional random medium with oniy one length scale by randomly aligning the
phase screens and ensemble averaging over realizations. Each realization is specified
by a set of computer generated psuedo-random numbers that dtei mine Wy how much
each phase screen gets shifted. We find that the rate of energy conversion has a robust
dependence on the magnitude of the velocity fluctuations and the structure size, and
to a lesser extent on the frequency and whether the initial disturbance is a P wave or
an S wave. We also find that the energies tend to constant equilibri-.m values after
propagating a distance far enough, depending on the parameters which determine
the rate of conversion, and that the equilibrium ratio of S wave to P wave energies
is roughly given by the ratio of the P wave to S wave phase velocities. Aithough
this is merely a precursor of the actual 3D problem with multiple length scales to -be
investigated, it demonstrates the applicability of the method to address questions of
discrimination.

And finally, in chapter 5 we draw some conclusions from our exercises, and
fiscuss work currently in progress, which will -utilize the the techniques developed

in this report to address more pertinent and realistic problems related to seismic
discrimination.

M.2-
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SECTION 2

THE METHOD

2.1 DERIVATION OF THE RECURSION RELATIONS

The phase-screen method may be formulated as an initial value problem.
Between any consecutive pair of phase screens the uniform elastodynamic wave equa-
tion for the displacement vector, using the average values for the parameters of the

medium, is solved. The unique solution in that region is determined by specifying
the initial value of the displacement on the first of the two screen. This initial data
is obtained by evaluating the displacement in the previous region at this screen and
modifying the phase by a position dependent phase factor. The solution in each region
may be expressed as a Fourier expansion. decomposed into S and P waves. The Fourier
coefficients of the successive solution may be determined in terms of the Fourier co-
efficients of the previous solution and the phase factor. Thus by knowing the initial
displacement produced by a source, the displacement after N phase screens may be
recursively determined.

The elastic wave equation for the displacement vector in a uniform medium,
and in the absence of external forces is

02 u
p-a = u Vu ± (A +IA)V(V u), (10)

where u is the displacement vector, p and A are the average Lam6 moduli, and p is the
average density of the medium. The linearity of this equation allows the solutions to
be decomjsed into S and P waves. Thus the displacement vector may be expressed
as the sum

U = Up+us, (11)

where the two pieces are chosen to satisfy the conatrluts

V x U 0 (12)

I
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• . -US o (13) t

It may readily be shown that this separation can always be accomplished, and that it k

is unique. Using this decomposition the wave equation reduces to two simple homo-
geneous wave equations of the form

S6Pu = V2up (14)

= V2us, (15)2 at2

where ep and Cs are the mean propagation speeds for the respective disturbances,
given in terms of the density and Lam6 moduli by

/CS (17)

The general form of the solution of the these equations that propagates in

the forward direction is

f(,e) = /dkdk, [-pA(kx,kv,)ek'P + qB.Ik., k,)o"•"] e-', (18)

where A(k,,k,) and B.(k,k1,) are Fourier coefficients for the P wave and the two
poaKrWiions of the S wave respectively, and r = (z, ). There is an implicit sum
over a from I to 2 in this expression, following the standard convention of summing
over repeated indices unless otherwise specified. For simplicity, the factor of e"44

will be suppressed throughout the rest of the analysis since all of the solutions we are
interested in here will have the same time dependence. Note that the three dimensional
Fourier expansion, which is typically used to express solutions of this type, his been
reduced to a double Integral by use of the dispersion relations, which allor the wave
vectorsto be expressed•solely Wn tam of k and as

t0
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kp (ks, k.,(w 2/ - - k- ) (19)

ks (k.,kp, (OI/2 - k- k) 1/2). (20)

The longitudinal and transverse unit vectors, 8p and is, are defined such that the
constraints of eqs. (12,13) are satisfied, i. e. kp x ip = 0, and ks 5  = 0, a = 1,2.
The unit vectors satisfying these constraints are

p= -p = -(k,,k,,kp,) (21)

", _x ks =a cs2 k

= •"• 1 -•ý-- -/(ks,,O,-kz) (22)
3 Ix ks[ W? U

_ S Cs"•I3 k2•
i2 -1/ A- k wL - k2, -kvk5 8 ), (23)

3 iks x sI wl W2 us

where kp, and ks, are the z-components of eqs. (19,20) respectively.

For a given set of Fourier coefficients, propagation between the phase screens
is accomplished using eq. (18). Let us now introduce a phase screen at z = Az to
compensate for the previously ignored detailed structure. Schematically, if the initial
displacement vector, u(°), is specified, then the resultant displacement vector beyond
the screen, denoted by 0), is

u(I)IM--4 u'(24)

The superscripts on the u's will be used to indicate the number of phase
screens the wave has been propagated through. The solution for any value of the
superscript takes on a slightly modified form of the general solution of eq. (18). After
N phase =teens the displacement vector is

+ i; s.'% k,,,) Bs&4.IN.)-)} ekv). (25)
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The Fourier coefficients have been defined with the exponential factors that depend
on N already factored out to simplify the initial value equation at z =NAz.

At this point we depart from the traditional phase-screen approximation for
scalar waves, which has been realized, as in eq. (24), by multiplying the entire wave of
the previous region by an overall position dependent (but independent of k. and k4)
phase to provide the initial data for the solution in the next region. In our approach
we will multiply the longitudinal and transverse contributions by different A-phues,
which depend on the appropriate phase velocity for each.

Furthermore, each Fourier mode is multiplied by its own phase factor,
:. e. the A-phases depend on k. and k,. This simply reflects the fact that the phase
the wave accumulates from propagating some distance in the z-direction depends on
the angle, relative to the z-axis, at which it propagates. This angle is given by

arctan((k! + k')V'//(w'/c' - k* - k2)1/2). (26)

For small angle propagation the phase is, however, independent of the angle to first
order, and hence independent of k, and k,. This is satisfied if k., kv <* w/c, such that
k w/c. This will be true for either scalar or vector waves if the typical length scales,
in the plane perpindicular to the z-axis, are much greater than w/c (c represents either
the transverse or longitudinal speed for the case of vector waves). We are, however,
interested in problemn of elastic wave propagation with length scales, frequencies, and
speeds that do not strictly satisfy this condition, and hence the phase accumulated is
not independent of k. and k.

Incorporating these two extra features, if A(0-1)(k,, k,) and B{ v-l)(k,, k)
are the coefficients of the expansion of u0N"), i. e. the wave having been already
propagated through N - 1 phase screens, then the initial value equation for u(N) may
be expressed as

+ e;11 3 (,k) 0 4Sh4~) ~~N,, (27)

wAem the uniform phase that was acquired in propagating from (N - l)Aa to NA&
bas baen absorbed into the denitions the A-pbaus
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The coefficients A(N)(k) and B( N)(k) may be determined in terms of A(N-1)(k)
and B,(N-1)(k) and the A-phases by setting the RHS of this equation equal to the RHS
of eq. (25), evaluated at z = NAz, and then multiplying both sides of this new equa-
tion by e k , integrating over x and y from -oc to +oo, and projecting onto the
appropriate polarization vectors defined above. The result of this procedure is

A (k., = k) f dz dy f dkL' ei(&Lks2+ilk•-p)v

* {s -pk~ kP )(i(~ , A~(~i y

+ s - i (k' , k,)A (N- ) (kt , kt)e& (S')(k*, -,,) }(8+ ,.- ,-,,- (2()

B,(ksyk) f dt Jdyd f d~k# ei(hba3(hkv( 8 x

(kp x

+(k x (kk)(M 1 (, eA')~8t}(29)

where the vector products may be determined from cqs. (19-23).

As a quick check that the results of eqs. (28,29) are scim . net that if tho
A.phases are independent of z and V, then the z - y integration mray be performed
to yield a product of delta functions of V. - k. and k, - k. The integral over dZk'
may also be performed now. replacing k' everywhere with k. Evaluating the vector
products, It becomes clear that the contribution to APO) Involves only A(N- ), and not
B( V"1). The analogous result is true for each of the B.4v) as well. Thi shows that if
the medium is truly uniform, there is no interconversion between the P and two types
of S waves. However, if the A-phases do depend on the z - V coordinates, as they
will for iWteresting problem., the coefficients of the P wave alter the Nl phase screen

depends on both polarisations of the S wave and the P wave of the preceding region;
a similar result is true for the S waves as well. Thus the A-phases encode information
about the scattering and wave type conversion as the wave propagates through an
inhwnogeneous medium.

13



The A-phases at the N'h phase screen In terms of the velocity anomalies
between (N - 1)&Az and NAz are

[ + NABzdez')) !- k12] (30)

and a similar expression with P--+ S. At this point the phase-screen method has been
reduced to finding expressions for 6cp(z, y,z') and 6cs(zyz') for the physical prob-
lem, and specifying the initial form of the wave. In the next chapter we will look at
a particular example where their spatial distribution is given deterministically from
the medium. Eventually, however, they will be treated as stochastic quantities. First,
however, there are some further general results to be obtained.

2.2 MARGINAL NUMBER OF PHASE SCREENS

To determine the number of phase screens to be used, a self-contained
method is needed. In the next chapter we will have an exact solution with which
to compare. We could increasa the number of phase screens per observation distance
until the two solutions agree as well as they will. For most problems, however, the
exact solution is not accessible. We will determine the marginal number of phase
screens needed (MNPS for short) such that the phase-screen solution converges to
its asymptotic answer to within some given tolerance as the number of phase screens
are increased. T"is is self-contained and will optimize computer time, using only the
neccamy number of phase screens that yields an answer close to the the asymptotic
answer one would obtain if there were an infinite number of phase screens.

More explicitly, to determine the MNPS, a Cauchy criterion of sorts is used.
The distributions of velocity anomalies are chosen, and then the phase-screen answer
is computed, adding more and nore phase creens for a fixed observation distance.
The MNPS W determined when the norm squared of the difference between succes-
sive displacenwit vectors, one computed with K more pha&* screens than the other,
averaged over x and M, converges to within a specified tolerance.

For coavenience, we write the displacement vector as

utm)(r) ftaik {1h4M)(ka,k4, s) + 4tM)k,z,) + Ah,4u)(ka. k,.:)e~
(31)
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where the superscript M in this expression denotes the total number of phase screens
used for a given observation distance. The norm squared of the difference of two
displacement vectors, both the same except tCat one is calculated using K more phase
screens than the other, is

IlU(M) U- - iif d'k (f (uM)(k) - ut4MK)(k))

+ ; (uM)k) - u(M-'K)(k)) + k (u€€l - u(M•K-(k)) }1""+", 1 2

= d/dk dk { (u(M.)() - .4-Mx)(k)) (.4) (ki') - u(M-')(k').)

+ (u.")(k) - .- "K) (k)) (!ýN)(k')"- u--)(e)-)

+ (u#W)(k) - us4m-K)(k)) (ut4m(kT) - u"K) (k#)*) }~~.h)+~,')
(32)

Integrating this quantity over z and y, and dividing by the len.gth of the interval in
each direction, yields a product of delta functions of the wave numbers as the lengths
of the intervals go to infinity. The average of the norm of the squared difference,
denoted ANSD, is given by

ANSD(z,) jL-• f,.z ,dtjuM(•~, (ZYz1

f4 2k{ItM,')(k. )- (

+ 1 u w o M (k, h thi -u')(k. --)I + Ijt wi)(k. d•,•) -u" t) .

The .unadlest value of Ml such that thscriteriou is satifed wil deicrrnuae the #uwnbe
ofphase screens to be used.



2.3 ENERGY FLUX

To conclude the general results, we compute an expression for the time-
averaged energy flux for both the longitudinal and transverse displacements in terms L

of the Fourier coefficients of the phase-screen method. The energy flux will also be
averaged mer the z - y plane, which allows the total energy to be expressed as the
sum of the Individual energies of the P and the two components of S waves. Thus
an function of s, the ratiou of P to S and SV to Sy (the two polarization of the S
wave) may be simply determined. Also, the ratio of transmitted to incident fluxes
may be extremised with respect to the parameters of the medium, providing a means
to determine what types of regions produce significant or small wave type conversion.

The energy flux given in terms of the displacement is

where u in this expression represents only the real part of the complex displacement,
and the subscripts refer to the cartesian components. Time-averaging this expression
produc

where now u represents the full complex displacement without the time-depeadet
exponential phase

Insarting the displacement, given by eq. (2is). into this expression, and av.
craging over the x - y plane, the only nonvanishing component of the averaged fluxts
are the -xcompnents, which for the N, region Ma be expressed as

4et' li d3&)k* 1J (6

lit

I
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where a - 1,2 and IkI - + . The limits of Integration are due to the fact
that for larger Jkj the modes are evanescent, and do not contribute a real part to the
flux, a should be expected for a non-dissipative medium. From these expressions it is
obvious that energy is conserved throughout the region between any consecutive pair
of phase screens. Energy conservation from one region to the next is not nearly so

* trivial, and will now be examined.

2.4 MATRIX FORMULATION AND ENERGY CONSERVATION

The examination of energy conservation is most efficiently performed using
a matrix representation of the recursion relations. Although there exists a analogous
matrix representation in three dimensions, and a generalization for continuous values
of the wave number, for the purposes of the rest of this report, and to clarify the details,
we shall consider two dimensional media with periodic boundary conditions in the z-
direction. The 21) problem may be recovered as a special case of the 3D problem by
setting k. = 0, and the periodic boundary conditions replace the continuous variable
k, with mv/2d, where the period is 4d and m is an integer; the corresponding integrals
are replaced with sums. The Fourier coefficients B1. decouple from A. and Bl. in
the recursion relations when k, = 0, and hence will be set to Mero.

Dropping the '1' subscript from A., we shall rescale the Fourier coeflicients
as

jgt)_ra(rmes. % tt •/.

__2du,) (39)

and define the vector of Fourier ckfficlnts

IV) (A(N)...-A-'."~ .4 N•'t A ,k.u•",•I ••.l.".'
(40)

where Mp and Mt awe the gmatet iuteqe les than dw/wep and 2dw/we€* evs-€
tivvly, and 7 deo the tran of the r vector. Only the aodes with harmoc



adependence are included in this vector. For integers larger than these values the
modes are evanescent, and will not be inchu Ae. This vector may be written schemat-
ically in block form as

IV(V)) (41)

and the matrix that represents the recursion relations may also be expressed in block
form as

U (42)

where the integers m,n range from -Mp to +Mp, and the integers u,ts range from
-Ms to + Ms. The off-diagonad blocks represent conversion of one type of wave into
another, their explicit form will be determined shortly. The recursion relatkos for the
Fourier coefficients may now be expressed as

) . (43)

where the summation coUvVStIo is cmplwed, or equivale-tly as

jvjmý ý UI (N-I. (44)In addition to wain~ k, 0 and makiug k. discrete thv 4-phases may be
expanded in Furir *ais as

amd a simila expreso for th S ww. A-iPkwf comining is famali with
OW ("82) Y~eds
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UM,- 114 I (,( ),',.• ,)•8(,)-- (47)M(= D,-. ) -- ,"•, (46)

The total energy flux in the N' regioa, averaged over time and the z-

S (VN) V(,- )), .( - (50)

This simple form waw made pwssible by the rescalings of the Fourier coefficients in
eqs. (38,39). The energy o4 the P wave is given by the first 2?M% + 1 terms of this
expression, and the energy of the S wave is given by the remaining terms. Using the
recurs"c relations this uay be r-expressed as

Thus (w enegy to be conserved from one region to the next the recursio malfix U
must be unitary. i. e. it I is defined to be the identity ma-tix, then

Ulu u t' . (52)
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For general A-phases the recursion matrix is not unitary, although for the
range of parameters for which the phase-screen method is expected to be valid, it is
almost unitary. Almost unitary is defined to mean that the eigenvalues of the matrix
are close to being unimodular, and the commutator of the matrix with its adjoint has
small entries. Although the violation of energy conservatien at each phase screen may
be less than a tenth of a percent, the cumulative energy violation after propagating
through a thousand phase screens may be significant. To remedy this problem we
have employed the following algorithm.

First, the complex vector IV) is written as a real vector of twice its original
length simply by entering the real and imaginary part of each complex entry as pairs of
entries in the real vector. The complex matrix U is also put in real form by replacing
each complex entry U,, with the 2 x 2 block

(ReCU -ImUi(
(53)

ImUj, ReUiJ

If the real matrix corresponding to U is denoted by R, the condition for energy to be
conserved is that R be an orthogonal matrix, defined to satisfy

RTR =JRRT = I. (54)

The second step of the algorithm is to perform a singular value decomposi-
tion of R, i. e. write

R = OD0 2  (55)

where 01 and 02 are orthogonal matrices, and D is a diagonal matrix whose entries are
the singular values of R. The singular values of a matrix are the positive square roots
of the eigenvalues of RTR. This decomposition must be performed by a numerical
routine in practice. The matrix R can be said to be almost orthogonal if its singular
values are all close to unity. To make R exactly orthogonal we simply replace D with
the identity matrix I. Thus

R -- 0102, (56)
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which is clearly orthogonal since 01 and 02 are both orthogonal.
At this point we have the necessary machinery to work on specific problems,

which is what we will turn to now.
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SECTION 3B

COMPARISON WITH AN EXACT SOLUTION

We shall illustrate the phase-screen method for a problem whose exact so-
lution is tractable without being trivial. The test problem we have chosen, shown in
figure 3, is to solve for the elastic displacement vector in a two dimensional medium

f constructed from two different homogeneous strips of equal width, repeating alter-
nately and infinitely in the x-direction, and of infinite extent in the z-direction, taken
to be the forward direction of wave propagation. We shall center the origin at the
mid-point of region one, and by convention let the regions both be a distance 2d wide.

The exact solution for this problem is calculated first, and then the phase-
screen approximation is computed and compared to it. We shall use this comparison
to quantitatively understand the limitations of the method. In particular, we examine
the limits of the region widths, the magnitudes of velocity fluctuations about the
mean, and the propagation distances for which the approximation is valid. We also
provide some explanation for why these limits exist. This analysis will yield some

; guidelines for the range of parameters over which the phase-screen method may be
trusted for problems whose exact solutions are not accessible.

Also, the ratio of the flux for a transmitLed S wave to the flux of an incident
P wave is extremized, for a single phase screen, with respect to the ratio of the width
of the regions to the free space wavelength. This analysis is performed for various
ratios of cp/cs. The same result is computed for an incident S wave and transmitted
P wave. This result yields insight into the wavelengths, or equivalently structure sizes,
that contribute the most to wave type conversion, and the dependence on the wave
speeds.

3.1 THE EXACT SOLUTION

We begin by presenting the exact solution to the problem stated above.
By "exact" we mean that there is no fundamental approximation made for the wave
equaton or the boundary conditions used to solve this problem. Some numerical work
must be performed, however, to obtain the final result, which cannot be written in
dosed form, but the solution may be determined to any desired accuracy.

22



Figure 3. The 2D miedium for the test problem Is comprised of two
alternating hooeou strips.
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Whe procedure ffor sdiving-this problem: is ýrelatively straightforward. First,
1the ihomogeneous wave equation is solved in each jrgilon. Then -these solution wre
rmatdied together, detenninh~g the unique solution, by.satisfyin -the lboundary con-
ýdltious at ithe interfacesandithe Initiailcondition-for the wave at': =,0.

To 4impify fnding'tire solution, 'the symmetries of the -problem -may be ex- 1
;ploited. Airst, theimedlumipouesues periodic trwanlation .invariance in the z-direction.
Any pako rmf~ighboring ei"on4, labelled (one and two, are ýindlatlnguishable tram all
other asud ýptirs. 60ony 'the tsdfutin tin a ~undaznental pair of regions Zonstbe calcu-
lated; the 1bonndary ~conditions are tmatched wily at the interface ýbetweemthms two
region. Mhe4olutiona in aflother pa-a f reions vire denticsl to this one.

Second,A~he -medium is .±laty invariant under reflections about the z-axis.
Solutions anay ~e separated into iparity eigenfunctions that are either even or odd as
X -4 -S. ffaven and odd parity solutions exist and -may be treated separately in each
,region, 'the number of unknowns to rolve for .in -the -boundary value equations will be
reduced -by a factor of two. Clearly the solution in the region centered on the z-axis,
from xz -~d to:x = d, may be separated into even and odd parity elgenfunctions. We
shallmow argue that the solution An all of -the other regions must be of -the same parity,
when expanded about the midpoint of :that particular region, as the one centered ýon

'the XzaMi.

Reering to -figure 3, parhty about the z-axis alone only guarantees, for ex-
ample.that the -olution betweenz= d andz =3dis an evenor odd reflection of
the solution -between z = -Ud and:z -d. However, If we simultaneously invoke
translation invariance, there Is also parity invariance about all of the lina parallel -to
-the x-axis and centered at the midpoint of each region. Furthermore, the parity of the
.solution about these lines must be the same, either even or odd. in a&H of the regions,
'for-the .olu#lons to match smoothly at the interfaces.

To see that these statements awe true we argue that the converse results
leadts 'to contraditlons. Suppose the solutions in the regions from: x 4 to s 3d
and ifrom z -3d to:z -d respect the parity symmetry about the z-axis, but
noot about the lines centered at the midpoints of the two regions. It is trivial to set
that ithen solutions cannot be identical. This contradicts the asumption that there is
Atanslatio invariance. Pushing thi argument slightly further, suppose the solution
is the region fiom:z -d to x d has a particular parity about the a-axis, and
lb. imolition In -the region from z 4 to s Ud has the opposite parity about Its
iudp~olnL Thesaolutlin dw xeqon from:z -3Uto: xr -d that I& eidenical to he
IWlUUoainthWngionfrom: d itoa S 3dUcMAnojoin smoothly to theuaoluatinm
moio ýoue 4t za = -, i. c. the deivati~v of the displacment with respet to z wil
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be discontinuous there. Thus the boundary condition involving such derivatives will
not be satisfied, and hence this is not a valid solution. These arguments are trivially
extended to the other regions as welL

Combining these symmetries, we may arbitrarily choose the fundamental
pair of regions to be the one between z = -d and z = 3d; the solutions In these
two regions may be separated, both into either even or odd eigenfunctions, expanded
about the midpoint of that region. For example, the z-dependence of the solution
between z = d and z = 3d may be expressed in terms of either even or odd functions
of the argument (z - 2d). The boundary conditions at the interface of these two
regions have thus been greatly simplified.

The wave equation to solve is the same as eq. (10) except that here there are
two regions, each with their own densities, elastic moduli, and hence wave velocities.
In each region the general solution corresponds to that of a homogeneous displacement
wave. The general solution in region one may be expressed as

u,(r) = f . [/pAI(k.)etk&" + isBi(k,)e'k3' 7] (57)

and to obtain the solution in region two simply let 1 - 2 and z •-* (z - 2d).

To solve for the coefficients of the expansion it is necessary to match the
boundary conditions at the interface. It is worth noting that we have written the
expression above in terms of k, instead of k. as for the phase-screen case to simplify
matching the boundary conditions for all values of z. Using the dispersion relations,
the wave vectors in each region may be written in terms of k, as

ks = ((w - ks)'1 .k.)(

As discussed, the solutions may be separated by their parity. Note that in
order to atisdy the constraints of eW. (12, 13), if the z-component of the displacement
vector has a particular parity, the z-componeat must have the opposite. Thus there are
only two parity eigenfunctions that the solution may decomposed into, which for the
sake of convenience will be labelled (evenodd) or (odd even) according to whether the
z-component has even or odd parity respectively. Note ao tht the initial condition
chosen must be consistent with the parity of the solution, c. t. if the incoming wave
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is a uniform plane P wave, the solution should have even parity for the x-component,
and if the Incoming wave ii. a uniform plane 8 wave, the solution should have even
parity for the z-component. We will examine the latter case first. For simplicity, the
following definitions will be used:

=d - k2l (60)

b. = =I- (61)

cp, kC= ! (62)

S= ) S (63)

where the subscript refers to region one or two. Using these definitions the solution
in region one with (evenodd) parity may be written as

U3(r) = fdk{[iaacos(wasz/cpi) + clisin(ivaiz/cpj A1 (k)

+ [ibicos(wdizlcs) - idtisin(wdaz/cs)1 BIh(k)}el'. (64)

There is a similar expression in region two with I --, 2 and z -• (z -- 2d). All of the
square roots denote the principal value of the complex square root, and k _> 0 since
only the forward wave is included.

Now we will proceed to determine the unknown coefficients by solving the
boundary conditions at z = d. There are two vector boundary conditions at the
inteface to be satisfied. First, the displacement must be continuous at the interface
to insure that the velocities are finite everywhere. And second, the traction (the
normal projections of the strUm tenso) must be contnuous there as well to avoid

Continuity disacement, uI(d.) ul(d4), yields the following two .qua-
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at cos (waid/cpj) Ai(k) + i cos (wd, d/cs,) B1(k)

a2 cos (wa 2d/cp,) A2(k) + b cos (wdd/cs,) B2(k) (65)

cl sin (wad/cp,) A,(k) - di sin (wd,,d/csj) B1 (k) =

- C2sin (wa2d/cp,) A:(k) + d2 sin (wd 2dlcs,) B2(k). (6)

Similarly, continuity of traction at z = d, T 1(d-) = 7T'(d+), yields two equations.

First, the normal projection of the stress tensor may be written in terms of the dis-

placement as

7/' =u -A + az, (67)

To clarify the notation, all superscripts here refer to cartesian components of tensors

or vectors, and zi = z, z2 = z. The subscripts, as for the displacement vector, will

refer to the particular region. Using the expression for the displacement, eq. (64), the

two traction equations are

II --ale, cos(woid/cpjAi(k) + -I(bs - d') cos(wdd/csjBu Mk)}

CP4 CS$

cP44

, :a' +%I] sin(wojd/cp,)A,(k) - 2 )4sIn(wdadlcsh)Jh(k). (69)

There are four sets of unknown Fourier coefficients, and one set of discrete

wave numbers to solve for. We will divide the four boundary condition equations

arbitrarily by 13(k), use three of the equations to solve for A&/P 4 . DI/OD, and A3/D,
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and then insert these expressions into the fourth equation to determine the discrete
eigenvalues allowed for k, labelled k., where m is an integer. The remaining set of

discrete coefficients, {B:,M {BSs(k.)}, specifies the shape and overall normalization
of the displacement wave, which is given by an Initial condition that we will choose at
5=0.

As will be shown shortly, the eigenvalue equation is a transcendental equa-
tion, making it necessary to solve for the eigenvalues numerically. This forces us to
choose specific values for the parameters of the problem. A choke that simplifies the
algebra considerably is to let A, = A2 = 0 and #1 = #2. The densities of the two
regions must be different to have an interesting problem, but by making this choke
for the elastic moduli, their explicit dependence cancels out of the transcendental
equations, and only the phase velocities need to be given numerical values.

The four equations are divided by B,, however, the solutions of the first
three equations for A,/Bi, B,/B2, and A2/B2 are all divided by the determinant of
the matrix of Cramers rule when solving a linear system of equations. We will absorb
this determinant into the definition of B2(k), and drop the subscript so that we may
write the solution in a symmetric form for the two regions. Using the first three
boundary conditions, along with the choices for the Lam= moduli just mentioned,
some tedious but straightforward algebra yields the following expressions:

C1(k) • A1(k)/B(k) = C(b- be)sin(wa~d/cp,)cos(wdld/cs,)cos(wud~d/cs,)

+ arbsd2sin(wdsd/cs,)cos(waud/cp)cos(wdad/cs,)

+ G,&bd, sin(wdsd/cs,) cos(wad/ch) cos(wdjd/cs) (70)

Tj(k B1(k)1B(k) = aelbletn(waod/ep,)cos(wa:d/c4 ,)coe(wd~d/es.)

+ e•,bc •(w,d/e,,) €ow(wa•d/cp) cos(ud,d/cs). (71)

and Ailar expremiowa for 4aand Tl, but with 1- 2. T3, 6simply the determinant
at the matix discused above.

Insertng these expressiow into the fourth equatlon, the transcedental
eigenvalue equation for k is
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0 = tan(wagd/cl ) tan(wdld/c, albi old, + tan(waid/cl ) tan(wdsd/cescsd1

+ tan(tvasd/cp1) tan (wdad/csa5)ablczdl + tan(waid/cp1 ) tan(wd~d/csJGsbscsdS

+ tan(woid/cp,) tan(wa~d/cpJ(4- 01)(4 - 41). (72)

It has been written in terms of the tangent function by dividing by the necessary
sines and cosines. Writing it in this form simplifies the numerical root finding pro-
cess because the asymptotes of the tangent functions provide natural limits to search
between for the roots. In fact, between any consecutive pair of asymptotes there are
either two roots, one root, or no roots.

All that remains to completely specify the solution is to fix the initial shape
and normalization of the wave, specified by the set of coefficients (B.). To do this
we will choose that at z = 0

u1(X,0) = u2(Z,O) = (73)

This expression yields four equations, but there is only one set of coefficients (B,). In
general, each of these four conditions must be satisfied by a unique linear combination
of complete functions. Each linear combination is specified by the set of coefficients
that gets multiplied to these complete functions. This implies that unless the func-
tions, that have been used to expand the solution, are equivalent to four complete

sets of functions, there is no hope of satisfying the four initial condition equations at
Z = 0; the solution will be over-determined. It is worth noting that the cosine and
sine functions used to expand the solution are not orthogonal functions, making it
impossible to determine by casual inspection the nunber of complete sets of functions
they comprise. However, an examination of the eigenvalues of k reveals that they may
be grouped into pairs. This is much more apparent for the larger value* of k. In fact,
the discrete pairs asymptotically approach either inw/d or i(n + 1/2)w/d. Combining
this with the fact that thee me both sine and cosine functions presnt in the solution
Indicates that there are actually enough complete sets of functions to atis the initial
condition. Although this *s a only a heuristic argument, we can proceed to actually
solve the initial condition to verify that a solution does exist.

Another consquence of the fact that the cosine and sine functions, used
to expand the slution are not orthugoaal, is that projecting the solution for the
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displacememt eato t initial codltior, a is doA in ty*pia Fourker azabis, does not
yAddthe solution forthe i.Indvd al codcent. Instead we solve f, theeffioeci m4
mmerkally using a leat squarm zutwif The vwiable z is first discrethied to the aet
(z.), and the sum over the discrete vaues of k is truncated. Ab.. the set {(B.) ma
be written as a column vector of dimension M, where M is the value of m at which
the series is truncated. The initial condition may also be written as a column vector
of dimenuion N, where N is four times the number of discrete values of z chosen,
sinc-. there are two spatial vector components In each of the two regmý. The linear
trUAnomaINo that mps the coefficients Into the initial condition is an N x M matrix
whose entries depend cm k16 and z.. To solve for the coefficients require inverting
he matrix, which is performed numerikly by the least squares routine. To make

this clear, schematically the initial condition at z = 0 may be written as

. • 4 I( -# "(74)

Ub 0

where the subscript n labels the discrete values of z. Thus each entry actually repre-
seats a column of N/4 entries. Alo, the general soution at z = 0, may be written in
the form

u. = IU.BIE. (75)

ua

Vie wotutim for th wnko" coftr.U {/•) i

Having solved this iuveaion numerically, and using eq. (64,70,71). the com-
pkt ixislution for t6e diPlacenct for -4 < z < d with (even~odd) paity ks

1s4r) ~{fiat. C .al ZIoi'.S/ + heisin (Wes.XiCPjJ] Z".

+ cia.c*s(W4=2:k,,) - k4&.s~iis(4in ~ c Ta.)}8.4"', (?7)
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and the solution for d < z <3d Is the similar except with 1 -- 2 and z -- (z - 2d).

Having calculated the solution above, it Is now straightforward to writedown the (oddeven) parity solution. In region one, the displacement is

ulfr) = Jdk{ [ioassin (mels/cpj + , coo (wajz/crjI Al(k)

+ [fi •,sin (,,z/cs,) - kd, cos (wd•z•cs,)] D (k)}e4' (78)

and as before, a similar expression for region two with I -, 2 and z -. (z - 2d).

Continuity of displacement at z = d, us(d-) = u3(d+), yields the following
two equations:

4a sin (wald/cj) A:1(k) + b, sin (wdid/csj idl(k)

-4 a sin (IL. -,d/cp3 ) A2fk) - b3 sin (wd 2d/c4) B2(k) (79)

ce cos (w•ald/cpj A,(k) .- d, cos (wdd/es,) AM(k)

c: cos (wad/c,) A, (k) - d, co (wd..dt/s,) 02(k). (80)

Similarly, continuity of traction at z = d, '(d&) = 7'd(), yields

'a' -@•tetsin(wotd/cj•)A 1 (k) + -=(& - d•)sn(wodtd,/c.•j,)jtk

-s {ese,sin(wad/q..)A,(k) (+ a(• 4)u(,dlcs)Bs(&) (81)

2
M to -a get cwa(wa 1d/cp%)A,(k) + i'p iin(wutsdcs,) (dk)

At I ale, co(wa~d/cp.)As(k) + * dh, (uadadle)JS,(k) (52)
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As before, usW&i the Anrt three boundary condition equations, choosing.%,= I
As 0 and #I, = ps, and absorbing the determinant of Cramer's rule into the definton *j
afID(k), the coeffiients are

4,(k) A,(k)/B(k) cs(4 - 4) coo(w4sd/ei%) ul(tudsdjcsJ)sin(w4dklcs,)

+ etbdi cos(tudad/cs.) aln(vnjd/ep) uin(wdad/ess)

+ asthdd ccs(wdjd/es) sln(u*2d/cp%) "a(wd~d/c,) (83)

TI(k) 81(k)/B(kl =albsecaco(woid/cp,) sin(uwe~d/cp,) un(w~dsd/cs)

+ alblc, coo(wotd/ich) iirnwaid/p,~)sin(wd~d/cs.). (84)

and smil eprsionsfor Z:and T:,but with lI "2.

husrting these expressions into the fourth equation, the transcendental
clgenalue equation for k Is

0 taUn(weldlejc) tan(w~d/ die ajhcjd1 + tan(iuald/cp, tan(wdjd/ce$)e&,~cjd

+ tarweld/e.h) tan(wdjdfs)ase~bedj + tan~a:d/e,,) tan(wdid/cs,)arbelds

+ tan(wvdd/e, acwj/.(& jci.(5

The intia c=&oalto at a 0 (a~ the (oddowAe) prity ease is

and as befoeth Ow e cieats wif be solved for using a Wast squares roulbwe WMt
then coefficimhAt the volution may be write as
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u,(r) [f=4 ~{(o~sin (Waa.,z/CP8 ) + It,.Cos (iua~iz/cp')J L

+ [ibi.isin (wd1 €,/cs) - kdim co (udamz/csj) T1. }ae'. (87)

"k For any other initial condition that is uniform as a function of z, the solution
will be a linear combination of the displacement vectors given by eqs. (77,87). For
initial conditions that do depend on z, the only change in the solution is that the set
of coefficients (B.) must be determined in the same manner as before, but for the
new initial condition. This completes the analysis of the exact solution, and we now
turn to the phase-screen solution of the same problem.

3.2 THE PHASE SCREEN SOLUTION

Now that the exact solution has been calculated, we would like to compute
the phase-screen approximation for the same physical problem, and then compare the
two. Figure 4 depicts how the problem will be treated using the phase-screen method.
The wave is propagated uniformly between phase screens, as discussed in chapter 2.
The phase of the wave at the phase screen is then retarded uniformly for values of
z corresponding to region one, and advanced uniformly for values of z corresponding
to region two. Because of the periodicity of the problem, the general solution of the
uniform wave equation, written as a Fourier integral in chapter 2, may be expressed
as a discrete series. Thus the displacement vector between the Nth and the (N + 1)'
phase screens may be written as

utv) (r) ~j{(ic. + k4 ..1)A)e(N)i

where a. ,•,,c,•4 are of the same form as those defined in eqs. (6 1,62,63) except
that the k refen to the z-ormponent of the wave vector in this caw, given by k
mr/2d, and instead of carrying a subsript that depends on the wave velocities of the
tw regions, there is only one quantity of each type that depends on the average of
eithor the tanvease or longlitudinal velcities of the two regions.

At t"- point the velocity anoumala ueed to be *pccikd for the problem.
F1 the P wave in rfgion one
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xI

-3d -d +d +3d

Kregion 1I4 region 2 -01

Figure 4. The phase-screen treatment of the test problem Introduces
the phase screens, represented by the heavy solid lines. The
square wave shows schematically how- the phase Is retarded or
advanced at the phase screens.
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cp + 6cp(X, z)= cp1, (89)

and in region two let 1 -- 2 in this expression. Using eq. (30) the argument of the
A-phase for the P wave is

SW2 1 /2

- (f - < z <)
S2) Az if d<z<3d

This is actually a periodic function, which simply repeats for the other regions. We
shall express the A-phase as the Fourier series

PeiA-)(z) - _ D$P• einrzl2d, (91)

n

where for n =0

1e ( p- .( 2(,j~\/ .(,'/_'U+2,/ / ~\A)D = - e k•) + e 2 J/ /, '(92)

2/2

C )2 2_VA fd x

There are also similar results for the S wave with P -- S in the expressions above.

Inserting the A-phases into the expressions derived in eqs. (46-49) produces

the recursion matrix for this problem. Recall that the Fourier coefficients in the matrix
formulation have been rescaled according to (38) and (39). In terms of the notation

used here, the elements of this matrix are

35

(12 2 )
2'1 As i - 2D'ýP e +e TP (92

MO 2and fo n i4



aPP a,,4 + b~, p (94)

SUPS - Pm id 1  41  ) (§5)
wc5  ad., + b4.c- -

cSsfd,~ ,e - cpanD(P)

UM, dy (97)

ad.

t ~~~~Note that if the velocities are the same in the two regions, D(),_ and D,,,_(s) both

S~vanish for n # mn, and there is no conversion of wave type.

* To completely specify the solution, the initial coefficients must be given that
Scorrtespond to the initial disturbance at z = 0. To correspond to the (even,odd) parity

initial condition of the exact solution given in eq. (73), the initial coefficients are

A$•)-0 (98)

e•) : ,•,o,(99)

and for the (odd,even) parity initial condition of eq. (86), let A$•) •- B$,°) in these two
S~expressions.

As discussed for the exact solution, for any other initial conditions inde-
I pendent of z, linear superpositions of these expressions may be used because of the
Stlinearity of the wave equation. For initial conditions that do depend on z, elementary

Fourier analysis may be used to determine the initial coefficients.

In principle, the phase screen solution for the medium we are interested in
is complete. To actually obtain the displacement after N phase screens requires nu-
merical work to iterate the r•.cuusion relations N times. We will numerically comparethe phase-screen solution to the exact solution in the next section.gn
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3.3 COMPARISON OF THE SOLUTIONS

To compare the two solutions requires numerical routines to obtain both
solutions, and a method of comparison. Although there are many ways we could
compare the two answers, we have chosen to do so in the following two ways. First,
the cartesian components of the two displacement vectors at fixed values of z are
plotted. Also, the average difference of the vectors at fixed z is computed. Explicitly,
this means that the absolute norm of the difference of the vectors is computed at a
given value of z, integrated over z, and divided by the length of the interval to obtain
the average difference.

Before proceeding with these comparisons, the marginal number of phase
screens, discussed in chapter two, must be calculated. For this periodic problem the
Cauchy criterion derived in eq. (33) becomes

•ANSD(zf) id -- d djumzz)- u("-")(z, z/)lis

-_, "I)(Z_ - ul,..(.,)l + luSM)(z,) - u(,M-")(z)lI}

< tolerance, (100)

where

u.A( (ZwI) = ('+1 + 4wBftEA'Yw 4J*1s (m+ 1) (101)

, ((,) = .' - bPLAM)e'•-4a,/t (Mi). (102)

Note that for M phase screens evenly distributed over a distance zI, Az = zf/(M+ I).
We have chosen the tolerance to be 0.005 for the following results, and incremented

the number of phase screens by adding 10 for every 50 km of observation distance,
i. e. K = 0.2zl is used in eq. (100). Tables 1 and 2 contain the MNPS results for
a series of observation distances using various combinations of the frequency, width,
and magnitude of velocity fluctuations.

From these tables a general guideline for the number of phase screens to be
used may be extracted;
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Table I. MmawIl number of p"bae screens for co, 3.6 km/.,
s, = 3.. kml.. .,I., =,6 .- i

a, (kin) 50 100 200 400
w (radj/) d (kin)

5.0 10.0 50 100 200 400
2.5 10.0 60 160 320 800

10.0 5.0 100 200 400 960
5.0 5.0 160 320 800 1600

10.0 2.5 320 800 1600 3840

Table 2. Marginal number of phase screes for cs, = 3.5 km/s,
Cs, = 3.9 km/l ,/cls =V

60 100 200 400
w (rad/s) d (km)

5.0" 10.0 170 340 680 1360
10.0 5.0 340 680 1360 3360
2.S 10.0 240 480 960 2S60
5.0 5.0 480 960 25W0 5120

10.0 2.5 320 640 1600 3200

i
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MNPS L , (103)

where L is used here to represent the observation distance, a 2 x iWs is the constant
of proportionality for the tolerance we have chosen, and 6 - 2. For a less stringent
tolerance the number of phase screens needed will be much less.

Using this information, the comparison is made as efficiently as possible. The
parameter space to be examined includes the magnitude of the velocity fluctuations
and three length scales, the wavelength, the width of the regions, and the observation
distance. One of these length scales may be eliminated, however, by noting that the
solution is invariant under rescaling all of the lengths by the same factor. Thus we
are free to fix the wavelength and vary the remaining parameters.

Figures 5-16 contain plots of the real rparts of the cartesian components
of the phase-screen and exact displacement vectors, both in the same figures, at a
sequence of observation distances. The solid lines correspond to the exact solution
while the dashed lines correspond to the phase-screen solution; the z-component of
the displacement is plotted above the z-component. Also, the average of the difference
of the norm of the two vector solutions has been included in the figure captions. For
all of these comparisons ep/cs = vr2, which was chosen to simplify the analysis of the
exact solution.

These comparisons demonstrate the accuracy and qualitative features of the
method, although we have included only a small sampling. For example, it is clear
that the accuracy of the method decreases for larger observation distances and smaller
widths, as compared with the wavelength, and for larger vvlocity perturbations. Fur-
ther a ysis shows that the quantitative conditions for the method to be valid are

kd > 1, (104)

such that backscattering is small, and

(105)

where again - 2 for the parameters we are using. This latter condition is very
siar to a geometical optic condition, and is demonstra.te by comparing figurm 5-
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I
condition, and is demonstrated by comparing figures 5-8 to 9-12. Since the width In
the latter figures was doubled, the displacement may be propagated to four times the

distance at the same accuracy. Also, comparing figures 9-12 to 13-16 demonstrates
that that doubling the velocity fluctuation reduces the observation distance by a factor
of four to maintain the same accuracy. These relations have been verified by other
similar comparisons.

3.4 ENERGY CONVERSION

We conclude this chapter with an examination of the parameters that induce
the maximum conversion of energy from one type of wave to another. To accomplish
this we maximize the energy conversion across a single phase screen for an incident
plane wave. The dependence of conversion on the velocity fluctuations comes from the
Fourier coefficients of the A-phases, given in eqs. (92,93); the absolute value squared of
these coefficients enter into the expression for the energy. These factors are bounded
from above regardless of the magnitude of the velocity perturbations, and satisfy

IDoI < 1 (106)

ID.' 2 (107)
nir

The dependence on the velocity perturbations is eliminated by using the combination
of the perturbations and Az that give the maximum conversion. Using the recursion
matrix, given by eqs. (94-97), with the optimum phase amplitude on the screen, the
conversion is maximized for various ratios of cp/es with respect to the dimensionless
variable

2dw (8

where the factor of 2 and x are due to the convention of making each region a distance
2d wide.

Table 3 contains the values of X, labelled Xu.., such that the conversion
is maximized for various ratios of the sound speeds. It illustrates that the P wave
converts energy at a faster rate than the S wave except when the sound speeds are
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equal, and that the length scales that induce the most conversion of either type are
approximately equal to the wavelength of the P wave. This regime is considered
"resonance scattering", and contributes the most to scattering effects; for X -C 1 the
medium is quasi-homogeneous, while for X > 1 the medium becomes transparent,
Wu (1988). The entries of , = 1.00 in table 3(a) are due to the fact that the
conversion is maximized as this dimensionless variable gets smaller, but for X < 1.0,
Mp = 0 (cf. section 2.4), and the recursion matrix becomes trivial, not admitting
conversion. Finally, note that as the ratio epics increases, the P wave loses energy
more rapidly, while the S wave loses energy more slowly.

Table 3. Maximum energy conversion from one phase screen for an Initial
(a) P-wave, (b) S-wave.

(a)

ep/es 1.0 v/ 2.0 4.0

XM4 1.17 1.00 1.00 1.00

S3(,)i(°) 0.31 0.44 0.58 0.64

(b)

cp/cs 1.0 V2 2.0 4.0

X,•= 1.17 1.11 1.06 1.01

.s 0.31 0.24 0.21 0.19
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SECON 4

RANDOM MEDIA

Here we apply the phasecreen method to media for which the position de-
pendent velocity anomales, kp(xzy, s) and ics(i, v, a), are characterized tabitically.
They will be treated zero mean random variabie. Eventually we will employ phase
screem with multiple wavelengths to describe random inhomogeneities on a variety of
length scales. The random pbasee for this problem my be computed in terms of the
power spectral density (PSD) of the medium, Knepp 11983 and Martin and Flatti
119881, but this will not be done here. Instead we will limit ourselves to one length
scale to obtain the results that follow.

To model a random medium with only one characteristic length scale we
use the same periodic phase screens as were used in the previous chapter, aligned over
some correlation length, but then randomly shifted by some distance less than the
wavelength of the screen in the z-direction, over the next correlation length. This
process is then repeated to propagate the wave to the observation point of interest.
The number of phase screens used per propagation distance for the random medium
problem will be the same as the MNPS determined for the layered problem, for par-
ticular values of the widths of the regions, frequencies, mean velocities, etc.

In general, a random shift in the alignment of the phase screen relative to
the positioning of the original one is accomplished by letting

A.(z) ---* A.•(z - 4d-y), (109)

whene - is a random number such that 0 < -y < 1. Refering back to eqs. (91-97),
the affect of this shift on the recursion matrix is straightforward to determine; the
ehlments of the recursion matrix transform according to

P ---, (110)
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~where again -Afp < m,n < Mp and -Ms < p,a < Ms.

* The transformation that implements the random shift may be represented
as a matrix as well, written in block form as

r I (114)

Note that only the diagonal entries are nonvanishing, and there is no implicit sum-
mation in this expression. The transformation law for the recursion matrix under a
random shift is then given by

U --- I'rut (115)

It is easily verified that Ir is a unitary matrix, or orthogonal when expressed
in its equivalent real form. Thus we need only modify the recursion matrix U once
to make it unitary; all random transformations of the modified recursion matrix will
automatically lead to total energy conservation.

For the simulations we perform, the recursion matrix of the problem in
chapter 3, given by eqs. (92-97), will be employed. The energy flux, averaged over z
and t, Is computed as a function of observation distance for a number of realizations.
Each realization is specified by a set of computer generated psuedo-random humbers

, which determine the alignment of the set of phase screens. We shall then ensemble
, average over realizations to smooth out spurious results. In praticte, we shall average

over one hundred such realizations.

* ~Figures 17-21 plot the averaged energy flux as a function of distance out to
* ~2000 kin, and for a variety of parameters. Although we are not attempting to model

the lithosphere here, the length scaleb and velocity perturbations are roughly those
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found in the lithosphere at NORSAR, %Nu and AkM 119651, where the correlation length
is 10 - 20 km and the rms velocity perturbations are 2%-4%. The total energy flux
hu been normalized to one by dividin& by the Incident flux. The pairs of figures on
each page are produced for identical media, including the particular realizations that
are used; the upper figures are for initial P waves, while the lower figures are for initial
S waves.

The significant features of energy conversion in this 21) random medium are
that the conversion rate

1. for P to S occurs at a faster rate than for S to P;

2. is approximately independent of the frequency for high frequencies;

3. is inversely proportional to the length scale of the medium; and

4. is proportional to the square of the velocity fluctuations.

These results may be qualitatively compared to the Born approximation
results obtained by Wu and Aki j1985J. The first result is simply due to the fact that
the impedance of the P wave is greater than that of the S wave, and the last three are
typical of high frequency scattering, In particular, the lack of frequency dependence
Is easily seen by noting that the displacement scales inversely with the frequency, but
the energy flux is given by the frequency squared times the displacement squared,
which does not scale with the frequency.

Finally, the energy plots, particularly figures 20 and 21, illustrate that the
energies of the waves tend toward fixed values if propagated far enough. These values
are Independent of the Initial cond•lons, and the asymptotic ratio of the S wave to P
wave energy is roughly ep/cs.

For propagation in a 3D random medium, realized in the way described
above, the expected result is that the energy will be equally partitioned among the S
wave polarizations and weighted according to the ratio of the phase velocities relative
to the P wave.

56



INITIAL P-WAVE

S-av

I.I

NTALS-WAVE

'0~v

W w 3 ab

Fiu*1.Eeg ovrinfra admmdu ihv 50rds

d . ii .7s e . m& pc /-



INITIAL P-WAVE
to

a2 S-Wave

7 0 o w o = 10 w a o
:(-M

INITIAL S-WAVE

S-wave

Ma aacnainfi aa ou k 00rds

P Ok f . mSsO me/#A



INITIAL P-WAVE

S-av

S~'W 2, 00 60 ~ 00 00 1400 '14'0 140 000

INITIAL S-WAVE

S-wave

u

''NO

SS



INITIAL P-WAVE

lo in w

P-wan*

4:.

Figu 4 "acvsmf anonmfmwhvL o
x 0k s& ms k . W pe ~

-Jw



* INITIAL P-WAVE

P-Wave

INITIAL S-WAVE

f~tw. 31. &EurU~ ctuvensI forI a raendmE aw~dlu with w 5.0 tad/s.,64 bu Is0 Min k ukfts ho 0.2 kin/s 4-cg 2.



SECTION 5

CONCLUSIONS AND FUTURE WORK

In this report we have developed the phase-screen method for elastic vec-
tor waves, and demonstrated its use to approximate elastic wave propagation in two
dimensions. By comparing with an exact solution we were able to determine the gen-
eral conditions for which the method is valid. The problem in chapter 3 proved to
be quite demanding, particularly on the number of phase screens needed to approxi-
mate the exact solution. This was due to the fact that the layered structure allowed
only a small number of the modes to propagate for parameters of interest, inducing
substantial scattering at oblique angles relative to the direction of propagation of the
original wave. For smoother phase distributions, P.. g. Gaussian phase screens etc., we
expect that the method will require fewer phase screens, and may reduce to the usual
"parabolic approximation" to produce accurate results.

We also demonstrated how the method may be used to compute P to S
conversion in terms of the averaged energy flux. We found that it is energetically
more favorable for a P wave to convert its energy into an S wave at a faster rate than
for the reverse process, particularly when the longitudinal phase velocity is much
larger than the transverse phase velocity. Furthermore, it was demonstrated that the
greatest conversion occurs for structure sizes comparable to the P wave wavelength.

The application of the method to a random medium was initiated by ran-
domly aligning the phase screens and ensemble-averaging the results. This provides
a genuine first step towards treating a truly random medium problem. The results of
the analysis here showed how the energy conversion again proceeds at a faster rate for
an initial P wave until the energies reach a fixed asymptotic value. The rate of conver-
sion is proportional to the magnitude of the velocity fluctuations squared, inversely
proportional to the structure size, and roughly independent of the frequency for high
frequencies. Also, the asymptotic ratio of S wave to P wave energies is approximately
given by CP/cs. These results indicate that using P-S ratios as a discriminant is vi-
able on regional distance scales of up to 2000 kin, provided the velocity perturbations
are ncJ too large.

Although this work demonstrates many of the strengths of the phase screen
method, it also indicates the need for a great deal of further work to be able to
tackle more realistic problems. The following features to be incorporated into the
phase-screen framework are under current investigation:
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First, the 3D random medium problem with one characteristic length scale is
being developed. This will allow Sj - Sv ratios as well as P-S ratios to be computed.
Second, the formulation in the time-domain is being developed. This will allow the
behavior of transient solutions to be investigated, and the time delay separating the
P wave-train from the S wave-train to be computed. Third, we are interested in using
sources with spherical symmetry to model explosions. And fourth, the incorporation
of phase screens with all length scales represented, weighted according to the PSD of
the medium, is under current investigation. This will allow wave propagation through
complex realistic media to be stochastically modeled.

The addition of these features should elevate the phase-screen method to
the point where it will be a viable tool for seismic discrimination.
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